In Vivo Targeted MR Imaging of Endogenous Neural Stem Cells in Ischemic Stroke.
نویسندگان
چکیده
Acute ischemic stroke remains a leading cause of death and disability. Endogenous neurogenesis enhanced via activation of neural stem cells (NSCs) could be a promising method for stroke treatment. In vivo targeted tracking is highly desirable for monitoring the dynamics of endogenous NSCs in stroke. Previously, we have successfully realized in vivo targeted MR imaging of endogenous NSCs in normal adult mice brains by using anti-CD15 antibody-conjugated superparamagnetic iron oxide nanoparticles (anti-CD15-SPIONs) as the molecular probe. Herein, we explore the performance of this molecular probe in targeted in vivo tracking of activated endogenous NSCs in ischemic stroke. Our study showed that intraventricular injection of anti-CD15-SPIONs could label activated endogenous NSCs in situ seven days after ischemic stroke, which were detected as enlarged areas of hypo-intense signals on MR imaging at 7.0 T. The treatment of cytosine arabinosine could inhibit the activation of endogenous NSCs, which was featured by the disappearance of areas of hypo-intense signals on MR imaging. Using anti-CD15-SPIONs as imaging probes, the dynamic process of activation of endogenous NSCs could be readily monitored by in vivo MR imaging. This targeted imaging strategy would be of great benefit to develop a new therapeutic strategy utilizing endogenous NSCs for ischemic stroke.
منابع مشابه
In Vivo Targeted Magnetic Resonance Imaging of Endogenous Neural Stem Cells in the Adult Rodent Brain
Neural stem cells in the adult mammalian brain have a significant level of neurogenesis plasticity. In vivo monitoring of adult endogenous NSCs would be of great benefit to the understanding of the neurogenesis plasticity under normal and pathological conditions. Here we show the feasibility of in vivo targeted MR imaging of endogenous NSCs in adult mouse brain by intraventricular delivery of m...
متن کاملA Look into Stem Cell Therapy: Exploring the Options for Treatment of Ischemic Stroke
Neural stem cells (NSCs) offer a potential therapeutic benefit in the recovery from ischemic stroke. Understanding the role of endogenous neural stem and progenitor cells under normal physiological conditions aids in analyzing their effects after ischemic injury, including their impact on functional recovery and neurogenesis at the site of injury. Recent animal studies have utilized unique subs...
متن کاملComparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملIn Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging
Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been ...
متن کاملThe emerging role of epigenetics in stroke: III. Neural stem cell biology and regenerative medicine.
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2016